
Computer Arithmetic

Addition and Subtraction

Dr. Mohammed Abdulridha Hussain

Signed Magnitude

Signed Magnitude

• Addition(Subtraction) algorithm:
• When the signs of A and B are identical . Add the

two magnitudes and attach the sign of A to the
result.

• When the signs of A and B are different , compare
the magnitudes and subtract the smaller from
the larger. Choose the sign of the result to be the
same as A if A>B or the complement of the sign
of A if A<B.

• If the two magnitudes are equal, subtract B from
A and make the sign of the result positive.

Hardware Implementation

• Let A & B two registers that hold the magnitudes
of the numbers and As & Bs be two flip-flop that
hold the corresponding signs.

• Complementer = XOR

• Adder = Full Adder

• E = Carry; AVF = overflow register

• If M = 0 ; Transfer B & Add

• If M = 1; 𝑠 = 𝐴 + ത𝐵 + 1 = 𝐴 − 𝐵

Hardware Implementation

With signed-2’s Complement data:
Hardware implementation

Hardware Algorithm

Computer Arithmetic

Multiplication Algorithms

Dr. Mohammed Abdulridh Hussain

Introduction

Introduction

• The sign of the product is determined from
the signs of the multiplicand and multiplier. If
they are alike, the sign of the product is
positive. If they are unlike, the sign of the
product is negative.

Hardware Implementation for Signed-
Magnitude Data

• First, Instead of providing registers to store
and add simultaneously as many binary
numbers as there are bits in the multiplier, it is
convenient to provide an adder for
summation of only two binary numbers and
successively accumulate the partial products
in a register.

Hardware Implementation for Signed-
Magnitude Data

• Second, instead of shifting the multiplicand to
the left, the partial product is shifted to the
right, which results in leaving the partial
product and the multiplicand in the required
relative positions.

• Third, when the corresponding bit of the
multiplier is 0, there is no need to add all
zeros to the partial product since it will not
alter its value.

Hardware Implementation for Signed-
Magnitude Data

Hardware Implementation for Signed-
Magnitude Data

• Initially, the multiplicand is in register B and
the multiplier in Q. The sum of A and B forms
a partial product which is transferred to the
EA register. Both partial product and multiplier
are shifted to the right.

Hardware Algorithm

• The signs are compared, both A and Q are set to
correspond to the sign of the product since a
double-length product will be stored in registers
A and Q.

• Register A and E are cleared and the sequence
counter SC is set to a number equal to the
number of bits of the multiplier. Since an operand
must be stored with its sign. One bit of the word
will be occupied by the sign and the magnitude
will consist of n-1 bits.

Hardware Algorithm

• After the initialization, the low-order bit of the
multiplier in Qn is tested. If it is a 1, the
multiplicand in B is added to the present partial
product in A. If it is a 0, nothing is done. Register
EAQ is then shifted once to the right to form the
new partial product. The sequence counter is
decremented by 1 and its new value checked.

• If it is not equal to zero, the process is repeated
an a new partial product is formed. The process
stops when SC = 0.

Example

Computer Arithmetic

Booth Multiplication Algorithm

Dr. Mohammed Abdulridha Hussain

Introduction

• It operates on the fact that strings of 0’s in the
multiplier require no addition but just shifting,
and a string of 1’s in the multiplier from bit
weight 2k to weight 2m can be treated as 2k+1 –
2m.

• For example

• 001110 (+14) has 24 to 21 (k = 4, m = 1).

Introduction

• 24 – 21 = 16 – 2 = 14, therefore, the
multiplication M x 14, where M is the
multiplicand and 14 the multiplier, can be
done as M x 24 – M x 21. Thus the product can
be obtained by shifting the binary
multiplicand M four times to the left and
subtracting M shifted left once.

Introduction

• Booth algorithm requires examination of the
multiplier bits and shifting of the partial
product. Prior to the shifting, the multiplicand
may be added to the partial product,
subtracted from the partial product, or left
unchanged according to the following rules:

Introduction

• The multiplicand is subtracted from the partial
product upon encountering the first least
significant 1 in a string of 1’s in the multiplier.

• The multiplicand is added to the partial product
upon encountering the first 0 (provided that
there was a previous 1) in a string of 0’s in the
multiplier.

• The partial product does not change when the
multiplier bit is identical to the previous
multiplier bit.

Hardware

Algorithm

• If the two bits are equal to 10, it means that
the first 1 in a string of 1’s has been
encountered. This is requires a subtraction of
the multiplicand from the partial product in
AC. If the two bits are equal to 01, it means
that the first 0 in a string of 0’s has been
encountered. This requires the addition of the
multiplicand to the partial product in AC.
When the two bits are equal, the partial
product does not change.

Example (-9) X (-13) = 117

Array Multiplier

4-bit by 3 bit array multiplier

Computer Arithmetic

Division Algorithms

Dr. Mohammed Abdulridha Hussain

Introduction

Examples

• By using Addition & Subtraction algorithms solves
the following:

(13 + 9) , (-7 + 5), (5 – 2), (-7 – 5), (-2 – 3)
(-4 – (-6)) , (-5 + 4)
• Multiplication
(21 x 31)
• Booth multiplication
(15 x 13), (15 x -13)
• Division
(15 / 3) , (163/11)

	1- Computer Arithmetic
	2- Multiplication
	3- booth
	4-Division Algorithm

