Computer Arithmetic

Addition and Subtraction
Dr. Mohammed Abdulridha Hussain

Sighed Magnitude

I — — p— p— p— p— p—

+ +

+ +

Subtract Magnitudes
Add

Operation ~ Magnitudes ~ When A>B WhenA<B WhenA =B
A)+(+B) +(A +B)

A) + (-B) +(A - B) ~(B-A) +(4 - B)
A) + (+B) ={A=38)" SH{B=A) +(A - B)
A+ (=B)ye A+ B)

A) - (+B) +(A - B) ~(B - A) +(A - B)
A)-(-B) +(A+B)

Ay={(t8) . —(A:+ B)

A) - (-B) -(A - B) +(B - A) +(4 - B)

Sighed Magnitude

Addition(Subtraction) algorithm:

When the signs of A and B are identical . Add the
two magnitudes and attach the sign of A to the
result.

When the signs of A and B are different , compare
the magnitudes and subtract the smaller from
the larger. Choose the sign of the result to be the
same as A if A>B or the complement of the sign
of A if A<B.

If the two magnitudes are equal, subtract B from
A and make the sign of the result positive.

Hardware Implementation

Let A & B two registers that hold the magnitudes
of the numbers and As & Bs be two flip-flop that
hold the corresponding signs.

Complementer = XOR

Adder = Full Adder

E = Carry; AVF = overflow register
If M =0 ; Transfer B & Add
fM=1,s=A+B+1=A—-B

Hardware Implementation

Mode contro

Load sum

Subtract operation Add operation

|

C Minuend in 4 Augend in 4

Subtrahend in B

A A #*= 0 =0
A <A4+1 A, <~ 0
A, — A I

END
(result isin 4 and A4;)

With signed-2’s Complement data:
Hardware implementation

BR register

|

Complementer and
V parallel adder

Overflow l T

AC register

Hardware Algorithm

Subtract Add
Minuend in AC Augend in AC
Subtrahend in BR Addend in BR
AC<AC +BR + 1 AC«AC + BR
Ve—overflow Ve—overflow

CEND) CENDD

Computer Arithmetic

Multiplication Algorithms
Dr. Mohammed Abdulridh Hussain

Introduction

23 10111 Multiplicand
19 X 10011 Multiplier
10111
10111
00000 +
00000
10111
437 110110101 Product

Introduction

* The sign of the product is determined from
the signs of the multiplicand and multiplier. If
they are alike, the sign of the product is

positive. If they are unlike, the sign of the
product is negative.

Hardware Implementation for Signed-
Magnitude Data

* First, Instead of providing registers to store
and add simultaneously as many binary
numbers as there are bits in the multiplier, it is
convenient to provide an adder for
summation of only two binary numbers and
successively accumulate the partial products
In a register.

Hardware Implementation for Signed-
Magnitude Data

e Second, instead of shifting the multiplicand to
the left, the partial product is shifted to the
right, which results in leaving the partial
product and the multiplicand in the required
relative positions.

* Third, when the corresponding bit of the
multiplier is O, there is no need to add all
zeros to the partial product since it will not
alter its value.

Hardware Implementation for Signed-
Magnitude Data

B register Sequence counter (SC)

l

Complementer and
parallel adder

(rightmost bit)
Ag Os 0.,

O—>»1 E P> A register — Q register

Hardware Implementation for Signed-
Magnitude Data

* |nitially, the multiplicand is in register B and
the multiplier in Q. The sum of A and B forms
a partial product which is transferred to the
EA register. Both partial product and multiplier
are shifted to the right.

Hardware Algorithm

 The signs are compared, both A and Q are set to
correspond to the sign of the product since a

double-length product will be stored in registers
A and Q.

* Register A and E are cleared and the sequence
counter SC is set to a number equal to the
number of bits of the multiplier. Since an operand
must be stored with its sign. One bit of the word

will be occupied by the sign and the magnitude
will consist of n-1 bits.

Hardware Algorithm

e After the initialization, the low-order bit of the
multiplier in Q is tested. If itis a 1, the
multiplicand in B is added to the present partial
product in A. If it is a O, nothing is done. Register
EAQ is then shifted once to the right to form the
new partial product. The sequence counter is
decremented by 1 and its new value checked.

* If itis not equal to zero, the process is repeated
an a new partial product is formed. The process
stops when SC = 0.

Multiply operation

Multiplicand in B
Multipligr in Q

AS <_QS$BS
Q; <~ QP B;
A<0,E<0
SC*—!z — 1

EFA < A+ B
shr FAQ
SC+SC —1
#+= 0 =0
SC

END
(product is in AQ)

Example

Multiplicand B = 10111 E A Q SC
Multiplier in Q 0 00000 10011 101
Q. =1;add B 10111
First partial product 0 10111
Shift right EAQ 0 01011 11001 100

O, =1;add B 10111

Second partial product 00010

Shift right EAQ 10001 01100 011
Q. = 0; shift right EAQ 01000 10110 010
Q. = 0; shift right EAQ 00100 01011 001
Q. = 1; add B 10111 '
Fifth partial product 11011

Shift right EAQ 01101 10101 000
Final product in AQ = 0110110101

OO -

o O

Computer Arithmetic

Booth Multiplication Algorithm
Dr. Mohammed Abdulridha Hussain

Introduction

* |t operates on the fact that strings of O’s in the
multiplier require no addition but just shifting,
and a string of 1’s in the multiplier from bit
weight 2k to weight 2™ can be treated as 21 —
2m,

* For example

001110 (+14) has 2*to 2! (k=4, m =1).

Introduction

e 24—-21=-16-2 =14, therefore, the
multiplication M x 14, where M is the
multiplicand and 14 the multiplier, can be
done as M x 24— M x 2%. Thus the product can
be obtained by shifting the binary
multiplicand M four times to the left and
subtracting M shifted left once.

Introduction

* Booth algorithm requires examination of the
multiplier bits and shifting of the partial
product. Prior to the shifting, the multiplicand
may be added to the partial product,
subtracted from the partial product, or left
unchanged according to the following rules:

Introduction

* The multiplicand is subtracted from the partial
product upon encountering the first least
significant 1 in a string of 1’s in the multiplier.

 The multiplicand is added to the partial product
upon encountering the first O (provided that

there was a previous 1) in a string of O’s in the
multiplier.

* The partial product does not change when the
multiplier bit is identical to the previous
multiplier bit.

Hardware

BR register Sequence counter (SC)

|

Complementer and
parallel adder

%
Qn Qn+l

i P

AC register e OR register —3—

Multiply

v

Multiplicand in BR
Multiplier in OR

J

AC < O
Qn+l =)
SC~—n

10

AC < AC+ BR + 1

v

R

QnQn+ 1

11

A 4

o1

AC < A4

C + BR

3

y

ashr (AC & CR)
SC<Sc—1

}

\/

Algorithm

 |f the two bits are equal to 10, it means that
the first 1 in a string of 1’s has been
encountered. This is requires a subtraction of
the multiplicand from the partial product in
AC. If the two bits are equal to 01, it means
that the first 0 in a string of O’s has been
encountered. This requires the addition of the
multiplicand to the partial product in AC.
When the two bits are equal, the partial
product does not change.

Example (-9) X (-13) = 117

BR = 10111

Qn On+1 BR + 1 = 01001 AC OR Qn+1 SC

Initial 00000 10011 0 101
1 0 Subtract BR 01001
01001

ashr 00100 11001 T 100

] A | ashr 00010 01100 i 011
0 1 Add BR 10111
11001

ashr 11100 10110 0 010

0 O ashr 11110 01011 0 001
1 0 Subtract BR 01001
00111

ashr 00011 10101 1 000

Array Multiplier

ag
by by
a; ag
aghy agby
albl albo al
Cy %) €y o

4-bit by 3 bit array multiplier

ao
aiy
Addend Augend
4-bit adder
Sum and output carry
az

Addend Augend

4-bit adder

Sum and output carry

a
o))
(o]
W
0
TN
)
W
0
%)
I

Co

Computer Arithmetic

Division Algorithms
Dr. Mohammed Abdulridha Hussain

Introduction

Divisor: 11010

B = 10001 yOlIlOOOOOO
01110
011100
-10001

-010110
--10001

--001010
---010100
----10001

----000110

Quotient = 0

Dividend = A

5 bits of A < B, quotient has 5 bits

6 bitsof A 2 B

Shift right B and subtract; enter 1 in 0

7 bits of remainder 2 B
Shift right B and subtract; enter 1 in Q

Remainder < B; enter 0 in Q; shift right B

Remainder 2 B
Shift right B and subtract; enter 1 in Q

Remainder < B; enter 0in Q
Final remainder

Divide operation

&

vidend in AQ
visor in B

FA < A+ B
DVF < 1

4

FA <— 4+ B

DVF <0

END
(Divide overflow)

Divide magnitudes

vy

shl FAQ

D o (o e [RL LB | A<~ A+B +1
A§O 1 A=B
EA <~ A+ B o, <1

Ry e oo

SC <—SCc— 1

END
(Quotientis in Q
remainder is in 4)

Divisor B = 10001, B+1=01111

E A Q SC

—t—, p—Pe——, pr— e, e,
Dividend: 01110 00000 5
shl EAQ 0 11100 00000
add B + 1 01111
E=1 1 01011
Set Q,, =1 1 01011 00001 23
shl EAQ (0] 10110 00010
Add B+ 1 01111
E=1 1 00101
SetQ,, =1 1 00101 00011 3
shl EAQ 0 01010 00110
Add B + 1 01111
E=0;leave Q,, =0 (9] 11001 00110
Add B 10001 >
Restore remainder 1 01010
shl EAQ 0 10100 01100
Add B + 1| 01111
E=1 1 00011
SetQ,, =1 1 00011 01101 1
shl EAQ (0] 00110 11010
Add B + 1 01111
E=0;leave Q, =0 (8] 10101 11010
Add B 10001
Restore remainder 1 00110 11010 9]
Neglect E
Remainderin A4: 00110

Quotient in Q: 11010

Examples

* By using Addition & Subtraction algorithms solves
the following:

(13+9),(-7+5),(5-2),(-7-5), (-2 - 3)
(-4-(-6)), (-5 +4)

* Multiplication

(21 x 31)

* Booth multiplication

(15 x 13), (15 x -13)

* Division

(15/ 3), (163/11)

	1- Computer Arithmetic
	2- Multiplication
	3- booth
	4-Division Algorithm

